3.78 \(\int \frac {1}{\sqrt {a+b x^2} (c+d x^2)} \, dx\)

Optimal. Leaf size=49 \[ \frac {\tanh ^{-1}\left (\frac {x \sqrt {b c-a d}}{\sqrt {c} \sqrt {a+b x^2}}\right )}{\sqrt {c} \sqrt {b c-a d}} \]

[Out]

arctanh(x*(-a*d+b*c)^(1/2)/c^(1/2)/(b*x^2+a)^(1/2))/c^(1/2)/(-a*d+b*c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 49, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {377, 208} \[ \frac {\tanh ^{-1}\left (\frac {x \sqrt {b c-a d}}{\sqrt {c} \sqrt {a+b x^2}}\right )}{\sqrt {c} \sqrt {b c-a d}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + b*x^2]*(c + d*x^2)),x]

[Out]

ArcTanh[(Sqrt[b*c - a*d]*x)/(Sqrt[c]*Sqrt[a + b*x^2])]/(Sqrt[c]*Sqrt[b*c - a*d])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+b x^2} \left (c+d x^2\right )} \, dx &=\operatorname {Subst}\left (\int \frac {1}{c-(b c-a d) x^2} \, dx,x,\frac {x}{\sqrt {a+b x^2}}\right )\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt {c} \sqrt {a+b x^2}}\right )}{\sqrt {c} \sqrt {b c-a d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 49, normalized size = 1.00 \[ \frac {\tanh ^{-1}\left (\frac {x \sqrt {b c-a d}}{\sqrt {c} \sqrt {a+b x^2}}\right )}{\sqrt {c} \sqrt {b c-a d}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a + b*x^2]*(c + d*x^2)),x]

[Out]

ArcTanh[(Sqrt[b*c - a*d]*x)/(Sqrt[c]*Sqrt[a + b*x^2])]/(Sqrt[c]*Sqrt[b*c - a*d])

________________________________________________________________________________________

fricas [B]  time = 1.04, size = 241, normalized size = 4.92 \[ \left [\frac {\log \left (\frac {{\left (8 \, b^{2} c^{2} - 8 \, a b c d + a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} + 2 \, {\left (4 \, a b c^{2} - 3 \, a^{2} c d\right )} x^{2} + 4 \, {\left ({\left (2 \, b c - a d\right )} x^{3} + a c x\right )} \sqrt {b c^{2} - a c d} \sqrt {b x^{2} + a}}{d^{2} x^{4} + 2 \, c d x^{2} + c^{2}}\right )}{4 \, \sqrt {b c^{2} - a c d}}, -\frac {\sqrt {-b c^{2} + a c d} \arctan \left (\frac {\sqrt {-b c^{2} + a c d} {\left ({\left (2 \, b c - a d\right )} x^{2} + a c\right )} \sqrt {b x^{2} + a}}{2 \, {\left ({\left (b^{2} c^{2} - a b c d\right )} x^{3} + {\left (a b c^{2} - a^{2} c d\right )} x\right )}}\right )}{2 \, {\left (b c^{2} - a c d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^(1/2)/(d*x^2+c),x, algorithm="fricas")

[Out]

[1/4*log(((8*b^2*c^2 - 8*a*b*c*d + a^2*d^2)*x^4 + a^2*c^2 + 2*(4*a*b*c^2 - 3*a^2*c*d)*x^2 + 4*((2*b*c - a*d)*x
^3 + a*c*x)*sqrt(b*c^2 - a*c*d)*sqrt(b*x^2 + a))/(d^2*x^4 + 2*c*d*x^2 + c^2))/sqrt(b*c^2 - a*c*d), -1/2*sqrt(-
b*c^2 + a*c*d)*arctan(1/2*sqrt(-b*c^2 + a*c*d)*((2*b*c - a*d)*x^2 + a*c)*sqrt(b*x^2 + a)/((b^2*c^2 - a*b*c*d)*
x^3 + (a*b*c^2 - a^2*c*d)*x))/(b*c^2 - a*c*d)]

________________________________________________________________________________________

giac [A]  time = 0.60, size = 70, normalized size = 1.43 \[ -\frac {\sqrt {b} \arctan \left (\frac {{\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} d + 2 \, b c - a d}{2 \, \sqrt {-b^{2} c^{2} + a b c d}}\right )}{\sqrt {-b^{2} c^{2} + a b c d}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^(1/2)/(d*x^2+c),x, algorithm="giac")

[Out]

-sqrt(b)*arctan(1/2*((sqrt(b)*x - sqrt(b*x^2 + a))^2*d + 2*b*c - a*d)/sqrt(-b^2*c^2 + a*b*c*d))/sqrt(-b^2*c^2
+ a*b*c*d)

________________________________________________________________________________________

maple [B]  time = 0.02, size = 300, normalized size = 6.12 \[ -\frac {\ln \left (\frac {\frac {2 \sqrt {-c d}\, \left (x -\frac {\sqrt {-c d}}{d}\right ) b}{d}+\frac {2 a d -2 b c}{d}+2 \sqrt {\frac {a d -b c}{d}}\, \sqrt {\left (x -\frac {\sqrt {-c d}}{d}\right )^{2} b +\frac {2 \sqrt {-c d}\, \left (x -\frac {\sqrt {-c d}}{d}\right ) b}{d}+\frac {a d -b c}{d}}}{x -\frac {\sqrt {-c d}}{d}}\right )}{2 \sqrt {-c d}\, \sqrt {\frac {a d -b c}{d}}}+\frac {\ln \left (\frac {-\frac {2 \sqrt {-c d}\, \left (x +\frac {\sqrt {-c d}}{d}\right ) b}{d}+\frac {2 a d -2 b c}{d}+2 \sqrt {\frac {a d -b c}{d}}\, \sqrt {\left (x +\frac {\sqrt {-c d}}{d}\right )^{2} b -\frac {2 \sqrt {-c d}\, \left (x +\frac {\sqrt {-c d}}{d}\right ) b}{d}+\frac {a d -b c}{d}}}{x +\frac {\sqrt {-c d}}{d}}\right )}{2 \sqrt {-c d}\, \sqrt {\frac {a d -b c}{d}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^2+a)^(1/2)/(d*x^2+c),x)

[Out]

-1/2/(-c*d)^(1/2)/((a*d-b*c)/d)^(1/2)*ln((2*(-c*d)^(1/2)*(x-(-c*d)^(1/2)/d)*b/d+2*(a*d-b*c)/d+2*((a*d-b*c)/d)^
(1/2)*((x-(-c*d)^(1/2)/d)^2*b+2*(-c*d)^(1/2)*(x-(-c*d)^(1/2)/d)*b/d+(a*d-b*c)/d)^(1/2))/(x-(-c*d)^(1/2)/d))+1/
2/(-c*d)^(1/2)/((a*d-b*c)/d)^(1/2)*ln((-2*(-c*d)^(1/2)*(x+(-c*d)^(1/2)/d)*b/d+2*(a*d-b*c)/d+2*((a*d-b*c)/d)^(1
/2)*((x+(-c*d)^(1/2)/d)^2*b-2*(-c*d)^(1/2)*(x+(-c*d)^(1/2)/d)*b/d+(a*d-b*c)/d)^(1/2))/(x+(-c*d)^(1/2)/d))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {b x^{2} + a} {\left (d x^{2} + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^(1/2)/(d*x^2+c),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*x^2 + a)*(d*x^2 + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \left \{\begin {array}{cl} \frac {\mathrm {atan}\left (\frac {x\,\sqrt {a\,d-b\,c}}{\sqrt {c}\,\sqrt {b\,x^2+a}}\right )}{\sqrt {c\,\left (a\,d-b\,c\right )}} & \text {\ if\ \ }0<a\,d-b\,c\\ \frac {\ln \left (\frac {\sqrt {c\,\left (b\,x^2+a\right )}+x\,\sqrt {b\,c-a\,d}}{\sqrt {c\,\left (b\,x^2+a\right )}-x\,\sqrt {b\,c-a\,d}}\right )}{2\,\sqrt {-c\,\left (a\,d-b\,c\right )}} & \text {\ if\ \ }a\,d-b\,c<0\\ \int \frac {1}{\sqrt {b\,x^2+a}\,\left (d\,x^2+c\right )} \,d x & \text {\ if\ \ }a\,d-b\,c\notin \mathbb {R}\vee a\,d=b\,c \end {array}\right . \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*x^2)^(1/2)*(c + d*x^2)),x)

[Out]

piecewise(0 < a*d - b*c, atan((x*(a*d - b*c)^(1/2))/(c^(1/2)*(a + b*x^2)^(1/2)))/(c*(a*d - b*c))^(1/2), a*d -
b*c < 0, log(((c*(a + b*x^2))^(1/2) + x*(- a*d + b*c)^(1/2))/((c*(a + b*x^2))^(1/2) - x*(- a*d + b*c)^(1/2)))/
(2*(-c*(a*d - b*c))^(1/2)), ~in(a*d - b*c, 'real') | a*d == b*c, int(1/((a + b*x^2)^(1/2)*(c + d*x^2)), x))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {a + b x^{2}} \left (c + d x^{2}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**2+a)**(1/2)/(d*x**2+c),x)

[Out]

Integral(1/(sqrt(a + b*x**2)*(c + d*x**2)), x)

________________________________________________________________________________________